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a b s t r a c t 

In this paper we address the problem of consensus in hardware interconnected networks. As an example 

of such, we focus on three-phase AC microgrids with Voltage Source Inverters (VSI) as generation units 

and the consensus control objectives of active power sharing and frequency synchronization. By distin- 

guishing between the interconnected control plant, the control objectives, and the feedback controller, 

we analytically study a non-linear model of the power flow within the microgrid through a robust linear 

approximation. From here we suggest a Linear Matrix Inequality (LMI) based methodology to verify that 

the proposed control strategy makes the network reach the consensus objectives. The theoretical analysis 

is complemented with a simulation study of an arbitrary microgrid. 

© 2018 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Consensus is a topic that have been largely studied during the

last decade. Most of the work in the area is based on Graph The-

oretical approaches with single or double integrators dynamics for

the agents and Laplacian consensus algorithms. Some examples are

the books [16,23,24] , or an increasing number of papers such as

[1,5,8,9,17] . The particular dynamics with which these publications

deal, makes it difficult to extend the results to other cases of inter-

est. Although some publications deal with more general dynamical

systems, e.g., [13,14,18,26,31,35,36] , there are still many open ques-

tions. In particular, hardware interconnections become an interest-

ing topic to address as it is difficult to assume that the controller

design instance has the liberty to modify them. Furthermore, this

becomes more intricate when the interconnections are non-linear

in nature. 

On another matter, microgrids are a promising solution for the

integration of renewable power sources into the existing energy

grid and for energy supply of remote areas. Some publications that

deal with the general control of microgrids are [4,10,21,22,25] . In

these systems the set of all generation units constitutes a network

of agents that interact with each other through hardware intercon-

nections, namely, through the electric grid. In this context, several

publications deal with the problem of power sharing and synchro-
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ization , e.g., [11,19,20,27–30,32,33] , two control objectives that can

e addressed as consensus problems. 

In this paper, we analytically study an arbitrary microgrid

here all the generation units are assumed to be Voltage Source

nverters (VSI) as an example of a network of agents with hard-

are interconnections. These interconnections can be described by

 trigonometric model what makes their analysis more challeng-

ng. The formal study of the system is done considering a classi-

al control perspective, that is, identifying and modeling the mi-

rogrid itself as the control plant where control objectives are to

e enforced by an appropriate controller. Based on existing strate-

ies, we analyze a family of primary and secondary controllers to

chieve respectively the control objectives of power sharing and

ynchronization. Even though some simplifications on the model

f the plant are done, these are necessary to focus the discussion

n the enforcement of the control objectives in the plant regardless

f particular characteristics of the actuators, sensors, transmitters,

r programmable controllers. The non-linear closed loop system is

nalyzed through a robust linear approximation in order to find

ufficient conditions for both objectives in terms of Linear Matrix

nequalities (LMI). 

The paper is organized as follows. Section 2 present some

reliminary mathematical concepts concerning Graph Theory and

Moore-Penrose) pseudoinverses. Section 3 states the characteris-

ics of the plant with which the paper deals. First the agents (the

SIs), as in several of the quoted publications, are modeled as sim-

le integrators. The hardware interconnections between them are

escribed through the non-linear model of the power injected by

ach inverter, what is explained in terms of the phase angles of
www.manaraa.com
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C  
he induced voltages. This model is equivalently represented after-

ards through the angle differences between nodes at each elec-

ric line of the grid. Next, a robust formulation for the analysis of

on-linearities is presented considering a linear approximation of

he model at the operation point. In Section 4 , the closed loop sys-

em is formally analyzed. First the definitions of the control objec-

ives (active power sharing and synchronization) are given as con-

ensus problems. A primary droop-Laplacian controller for power

haring and a secondary distributed controller to achieve synchro-

ization at nominal frequency are then proposed. From a closed

oop analysis, sufficient conditions for power sharing and synchro-

ization at nominal frequency in form of LMI tests are obtained.

ection 5 presents some simulation examples to corroborate the

iscussed aspects. 

Through this paper, matrix inequalities such as A < 0( A > 0) are

sed to indicate that matrix A is symmetric negative (or positive)

efinite. Matrix A 

′ is the transpose of A . The notation “� ” is used

o indicate a symmetric block within a matrix. The identity matrix

nd the null matrix are respectively denoted by I and 0 . A column

ector of ones is denoted as 1 , and a vector with zeros in every

osition except in the i -th row where its value is one, is denoted

s s i ∈ R 

N so that 
∑ N 

i =1 s i = 1 . If necessary, the dimensions of these

atrices will be stated as an index. A (block) element in position

 i , j ) of a matrix A is denoted [ A ] ij . 

. Preliminaries 

.1. Graph theory concepts 

A graph G = (V , E ) is a set of nodes V and edges E ⊆ V × V .

or further details refer to [7] or [16] . In the context of this work,

he set of nodes (also called vertices) V = { v 1 , v 2 , . . . , v N } corre-

ponds to controllable voltage sources and the existence of an edge

 k = 

(
v i , v j 

)
∈ E means that node i and node j interact with each

ther in the sense of the input of node j being the output of node

 , or vice versa. 

In an undirected graph, the edges are not ordered. We inter-

ret the ordered pair (v i , v j ) ∈ E as an undirected edge, that is,

e ignore the implicit order of the pair. Hence we can write

(v i , v j ) ⇐⇒ (v j , v i ) ∈ E , where v j � = v i ( (v i , v i ) / ∈ E ). The neighbor

et of a node i in an undirected graph G is defined as N i =
v j ∈ V | (v i , v j ) ∈ E ∧ i � = j 

}
. An undirected graph is connected if

here is a path between every two nodes and unconnected other-

ise. Any connected graph has at least N − 1 edges. A (spanning)

ree, denoted T , is an undirected graph which is connected and

as N − 1 edges, where N is the number of nodes. 

A weighted graph G w 

= ( V , E , w ) is a generalization of a graph

nd associates a weight to each edge through the function w :

 → R 

+ . The Laplacian matrix of an undirected weighted graph G w 

s defined as ˆ L (G w 

) = �(G w 

) − A (G w 

) , where A (G w 

) = 

[
a i j 

]
is con-

tructed so that a i j = w ((v i , v j )) if (v i , v j ) ∈ E and 0 otherwise;

(G w 

) = d iag { d (v 1 ) , . . . , d (v N ) } ; and d (v i ) = 

∑ 

j a i j = 

∑ 

i a i j . Then,

ach row and column of ˆ L (G w 

) sums up to zero. i.e., ˆ L (G w 

) 1 N =
 N×1 and 1 ′ 

N 
ˆ L (G w 

) = 0 1 ×N . It is a well known fact that ˆ L (G w 

) is

ositive semi-definite. 

Strictly directed graphs, or strict digraphs, are graphs where

ach edge has an orientation. That is, we do not ignore the order of

he pair (v i , v j ) ∈ E . Hence we can write, (v i , v j ) ∈ E ⇒ (v j , v i ) / ∈ E .

or every undirected graph without self-loops, 2 | E | strict digraphs

an be defined by giving an orientation to every edge. An arbitrary

trict digraph generated from an undirected graph G will be de-

oted by G 

o . The Incidence Matrix , denoted D (G 

o ) , of such a strict

igraph is defined as an N × | E | matrix where each entry o ik =
 

D (G 

o ) ] ik takes either the value −1 if the edge e k has its origin in

 i , o ik = 1 if node v i is the destination of edge e k or o ik = 0 other-

ise. It can be shown that for an undirected weighted graph G w 

=

(G , w ) , ˆ L (G w 

) = D (G 

o ) W D 

′ (G 

o ) where W = diag 
{

w ((v i k , v j k )) 
}| E | 

k =1 
.

urthermore, if G is connected, then rank { D (G 

o ) } = rank 
{

ˆ L (G w 

) 
}

=
 − 1 . 

.2. Some pseudoinverse properties 

Given a matrix A ∈ C 

m ×n , its unique (Moore-Penrose) pseudoin-

erse , A 

+ ∈ C 

n ×m , satisfies the Penrose equations : 

AA 

+ A = A , 

A 

+ AA 

+ = A 

+ , 

(AA 

+ ) ∗ = AA 

+ , 

(A 

+ A ) ∗ = A 

+ A . 

here A 

∗ is the conjugate transpose of A . For more details the

eader is referred to [3] or any other general reference. 

For a matrix A ∈ C 

m ×n , with r = rank { A } ≤ min { m, n } , there are

in { m , n } singular values, from which r are nonzero. The singular

alues are usually labeled in descending order. The non-zero singu-

ar values of A are calculated as the square root of the eigenvalues

f matrix AA 

∗: { σ > 0| σ 2 ∈ eig{ AA 

∗}} ⊆svd{ A }. 

The singular Values Decomposition (SVD), e.g., [ 3 , Ch. 6.2], of

 matrix A ∈ C 

m ×n with r = rank { A } > 0 is such that A = U �V 

∗,
here 

= U 

∗AV = 

[
diag { σi } r i =1 0 r ×(n −r ) 

0 (m −r) ×r 0 (m −r) ×(n −r) 

]
∈ R 

m ×n , 

 = row { u i } m 

i =1 ∈ C 

m ×m , and V = row { v i } n i =1 ∈ C 

n ×n are unitary ma-

rices (i.e., UU 

∗ = U 

∗U = I and VV 

∗ = V 

∗V = I ), and u i ∈ C 

m are the

ormalized eigenvectors of AA 

∗ and v i ∈ C 

n the normalized eigen-

ectors of A 

∗A . Using the definition of pseudoinverse, it can be

hown that 

 

+ = V �+ U 

∗, 

here, 

+ = 

[
diag { 1 /σi } r i =1 0 r ×(m −r ) 

0 (n −r) ×r 0 (n −r) ×(m −r) 

]
∈ R 

n ×m . 

If we decompose matrix V = row { V + , V z } , where V z =
ow { v i } n i = r+1 (the eigenvectors associated to the zero eigenval-

es of A 

∗A ) and V + = row { v i } r i =1 , we found that 

 

+ A = V �+ U 

∗U �V 

∗ = V ��+ V 

∗

= V 

[
I r×r 0 r ×(n −r ) 

0 (n −r) ×r 0 (n −r) ×(n −r) 

]
V 

∗

= V 

(
I n ×n −

[
0 r ×(n −r ) 

I (n −r) ×(n −r) 

][
0 (n −r) ×r I (n −r) ×(n −r) 

])
V 

∗

= I −
[
V + V z 

][ 0 r ×(n −r ) 

I (n −r) ×(n −r) 

][
0 (n −r) ×r I (n −r) ×(n −r) 

][V 

∗
+ 

V 

∗
z 

]
= I − V z V 

∗
z . 

Now consider a connected undirected graph C = (V , E ) . We

an define the matrix D = D 

′ (C 

o ) ∈ R 

| E |×N , from any strict digraph

 

o derived from C . As rank { D } = N − 1 and D1 = 0 , we have that

hat the null space of D 

′ D is generated by the normalized vector

 z = D 

⊥ = 

1 √ 

N 
1 . Therefore we have that, 

 

+ D = I − 1 

N 

11 

′ . (1) 

n particular, for a tree T = (V , E T ) , T 
+ T = I − 1 

N 11 ′ ∈ R 

N×N where

 = D 

′ (T 

o ) ∈ R 

(N−1) ×N . 

Similarly, if we define the weighted undirected graph

 w 

= (C , w ) , then matrix C = 

ˆ L (C w 

) = D 

′ WD , with W =
www.manaraa.com
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Fig. 1. Voltage and current at node i of a microgrid with N i = { j, . . . , k, . . . , l } . 
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diag 
{

w ((v i k , v j k )) 
}| E | 

k =1 
, also has the property 

C 

+ C = I − 1 

N 

11 

′ . (2)

For simplicity, in the following we define matrix J = 

1 
N 11 ′ . Note

that for any weighted graph G w 

we have that ˆ L (G w 

) J = 0 . 

3. Hardware interconnected network 

3.1. Model and control of a voltage source inverter (VSI) 

The model proposed in this section is based on the internal

control strategies described in, e.g., [21,25] . The three-phase volt-

age output of a Voltage Source Inverter (VSI) can be described

by its amplitude V i ( t ) > 0 and its electric angle ψ i (t) := ωt + δi (t) ,

where ω = 2 π f > 0 is a constant nominal angular frequency, with

f > 0 the nominal frequency in Hertz, and δi (t) ∈ R the phase shift

angle with respect to an arbitrary reference. 

At this control level, the intern dynamics of the inverters are

typically neglected so that the input/output relation of the voltage

operation (angular) frequency ω o,i := 

˙ ψ i (t) at node i ∈ V , consid-

ering internal control loops, switching modulation and appropriate

filtering, can be modeled as in [ [27,29,30] , etc.] with the following

equation: 

˙ ψ i (t) = u 

ψ i (t) , 

where u ψ i (t) is a frequency control input. This model assumes that

each inverter is equipped with some DC storage unit, large enough

to increase and decrease the AC power output in a certain range. 

The inverter is operated around the nominal frequency ω and

therefore its input is modified by: 

u 

ψ i (t) = ω + κu i (t) , 

where u i ( t ) is a control input and κ > 0 is a constant thought to

limit the magnitude of signal u i after feedback. 

With this, the intern dynamics of inverter i can be written as a

single integrator: 

˙ δi (t) = κu i (t) . (3)

The aggregation of all inverters corresponds to an integrator net-

work typical to consensus problems. Nevertheless, these agents are

interconnected by hardware relationships which are non-linear in

nature, namely by the electrical grid. These interconnections, al-

though one can model them through graph theoretical concepts,

are part of the control plant over which a consensus problem can

be defined. 

Additionally, we are interested on the frequency deviation with

respect to nominal frequency υi (t) := 

˙ ψ i (t) − ω = 

˙ δi (t) . Deriving

Eq. (3) , we can model the dynamics of the frequency deviation by

the following expression 

˙ υi (t) = κ ˙ u i (t) . (4)

Frequency measurement is often costly, both computationally and

economically. Therefore, we assume that υi (t) cannot be used for

feedback. 

From here, a microgrid can be characterized as a network of

integrator agents by the following compact equation: 

υ := 

˙ δδδ = κu , 

where δδδ = col { δi (t) } i ∈ V and u := col { u i (t) } i ∈ V . Note that ˙ υυυ = κ ˙ u .

This model does not include the effect of the electric grid on

the inverters. That is, the hardware interconnections between the

agents are not considered. 
.2. The electric grid as hardware interconnections 

An electric grid can be described as an undirected graph C =
(V , E ) , where the vertices are a collection of N electric nodes i ∈ V 

here three-phase generation units are connected, the undirected

dges are transmission lines between the nodes, denoted (i, j) ∈ E ,

nd electric passive loads are present at every node. Any electric

ircuit can be equivalently represented by this structure through a

ron reduction procedure as described in [6] . It is also assumed

hat the grid is connected. 

At every active node i ∈ V , we will consider a balanced load de-

cribed by time variant impedances composed by a resistance R ii in

eries with an inductance L ii . A transmission line (i, j) ∈ E between

odes i and j � = i will also be assumed as a balanced impedance

omposed by a resistance R ij in series with an inductance L ij . Note

hat always R i j = R ji and L i j = L ji . It is assumed that these line pa-

ameters are constant and can be estimated with reasonable accu-

acy. 

When ψ i (t) = ωt + δi (t) , a three phase balanced signal x abc 

an be represented in an equivalent rotatory reference frame as

 

dq = [ x d , x q ] ′ by means of Park’s transformation [2,12] . In this no-

ation, if i abc 
i 

is the current injected by an inverter in an active node

 and v abc 
i 

the voltage at that node, then the active power injected

y the inverter can be defined by P i = i d 
i 
v d 

i 
+ i 

q 
i 
v 

q 
i 
. A dynamical re-

ationship as function of the node voltages for the current can be

btained from a circuital analysis of the grid. A graphical represen-

ation of this can be seen in Fig. 1 . If the transient behavior of the

ine dynamics is neglected, the active power flow can be simplified

o 

 i (t) = 

3 

2 

[ 

R ii 

R 

2 
ii 

+ ω 

2 L 2 
ii 

+ 

∑ 

j∈ N i 

R i j 

R 

2 
i j 

+ ω 

2 L 2 
i j 

] 

V 

2 
i (t) + ... 

− 3 

2 

∑ 

j∈ N i 

R i j 

R 

2 
i j 

+ ω 

2 L 2 
i j 

V i (t) V j (t) cos 
(
δi (t) − δ j (t) 

)
+ ... 

+ 

3 

2 

∑ 

j∈ N i 

ωL i j 

R 

2 
i j 

+ ω 

2 L 2 
i j 

V i (t) V j (t) sin 

(
δi (t) − δ j (t) 

)
(5)

here ∀ i ∈ V , V i ( t ) is the voltage amplitude at generation unit i

nd δi ( t ) the corresponding phase angle. For simplicity, from here

n we will drop the explicit time dependence of the variables. Note

hat the operation frequency at the i -th inverter, ω o,i := 

˙ ψ i = ω +
˙ 
i , is not necessarily equal to the nominal value. 

Instead of dealing directly with the injected power P i at node

 ∈ V measured in [ kW ] or [ MW ], it is usual to treat power as a

imensionless quantity P̄ i measured in per unit [ p . u .]. That is, rela-

ive to a base quantity χ i > 0, so that P̄ i = P i /χi . A practical choice

f the proportional constants would be the nominal power rating

 of the respective generation unit. 
www.manaraa.com

i 



M. Parada Contzen / European Journal of Control 46 (2019) 80–89 83 

3

 

w

y  

w

δδδ

a

c  

w

P

T  

e  

y  

b  

c

 

w  

e

[

F  

r

F

t  

p  

l

3

 

δ

y  

w  

{

[

A  

i  

c

3

 

s  

t

δ  

a  

a  

θ

 

w  

t  

t  

t  

o  

c  

t  

e  

c

 

o

C  

w

 

t

w  

a

∇

N  

w  

I

∇

w  

e  

t

T  

p  

t  

t  

t  

T  

t

.3. Non-linear hardware interconnections model 

From Eq. (5) , with constant voltage amplitudes ( V i = V, ∀ i ∈ V )

e can write a non linear model for the power as 

 = c ( δδδ) + d , (6)

here, 

= col { δi } i ∈ V , d = col { P ii } i ∈ V , y = col { P i } i ∈ V , 
nd c ( δδδ) ∈ R 

N is a vector that depends on a nonlinear way of δδδ: 

 ( δδδ) := 

∑ 

i ∈ V 
s i 

∑ 

j∈ N i 

(
P i j (1 − cos (δi − δ j )) + Q i j sin (δi − δ j ) 

)
(7)

ith 

 ii = 

3 

2 

R ii 

R 

2 
ii 

+ ω 

2 L 2 
ii 

V 

2 , P i j = 

3 

2 

R i j 

R 

2 
i j 

+ ω 

2 L 2 
i j 

V 

2 , Q i j = 

3 

2 

ωL i j 

R 

2 
i j 

+ ω 

2 L 2 
i j 

V 

2 . 

he assumption that the voltage amplitudes at every node are

qual and constant, is done merely to simplify the following anal-

sis. Dropping this assumption would lead to similar expressions,

ut would make the analysis more laborious, however without

hanging the general conclusions. 

Note that the Jacobian matrix of (7) with respect to δδδ can be

ritten as a ∇ δδδc ∈ R 

N×N , that we will address as flux matrix , whose

lements are given by 

 

∇ δδδc ] i j := 

∂[ c ( δδδ)] i 
∂δ j 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∑ 

k ∈ N i 

P ik sin (δi − δk ) + Q ik cos (δi − δk ) if i = j, 

−P i j sin (δi − δ j ) − Q i j cos (δi − δ j ) if j ∈ N i , 

0 i.o.c. 

rom this expression we have that the flux matrix has the zero

ow sum property: (∇ δδδc ) 1 = 0 N×1 . Observe further that 

d 

dt 
c ( δδδ) = (∇ δδδc ) ̇ δδδ. 

If we define a matrix 

 := diag { 1 /χi } i ∈ V , 
hen we have that ȳ := Fy = col 

{
P̄ i 
}

i ∈ V is the vector of the injected

owers in per unit. Additionally, it is useful to define the per unit

oad d̄ = Fd and the per unit load change rate w̄ = F ̇ d . 

.4. Hardware interconnections linear approximation 

From Eq. (5) , a simplified linear model can be obtained when

i ( t ) ≈ δj ( t ), so that sin 

(
δi − δ j 

)
≈ δi − δ j and cos 

(
δi − δ j 

)
≈ 1 : 

 = C δδδ + d , (8)

here matrix C ∈ R 

N×N such that its elements are given ∀ i, j ∈
 1 , 2 , . . . , N} by: 

 

C ] i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∑ 

k ∈ N i 

Q ik if i = j, 

−Q i j if j ∈ N i , 

0 i.o.c. 

s Q i j = Q ji , C1 = 0 . This implies that C is rank deficient as one of

ts eigenvalues is identically zero. The trigonometric model (6) is

learly more difficult to treat that the affine approximation (8) . 
.5. Line angles representation 

The quantity δi corresponds to the phase angle of the voltage

ignal at node i . It is however possible to study the behavior of

he grid in terms of the angle differences θk := ψ i k 
− ψ j k 

= δi k 
−

j k 
defined over the k -th line (i k , j k ) ∈ E . Implicitly, this definition

lso fixes orientations to the edges because the angle differences

re arbitrarily done in one particular order ( θk := δi k 
− δ j k 

and not

k := δ j k 
− δi k 

). 

This can be studied by defining matrix D = D 

′ (C 

o ) ∈ R 

| E |×N ,

ith C := (V , E ) the undirected graph representing the grid. Note

hat this is not unique as the strict digraph C 

o is arbitrary. Fur-

hermore, as the orientations of the edges are arbitrary, the ma-

rix could be equivalently defined as D = −D 

′ (C 

o ) , i.e., altering the

rder of the differences that define the line angles, without any

hange on the following development. By construction we have

hat D1 = 0 . As the multiplication θθθ := D δδδ computes the differ-

nces between the angles of two neighboring nodes, then θθθ =
ol { θk } | E | k =1 

. 

With this, the linear model matrix C can be rewritten in terms

f the lines between generation units, (i k , j k ) ∈ E : 

 = D 

′ WD = 

| E | ∑ 

k =1 

(
s i k − s j k 

)
Q i k j k 

(
s i k − s j k 

)′ 
, (9)

here W = diag 
{

Q i k j k 

}| E | 
k =1 

. 

The non-linear expression (7) can also be written in terms of

he lines between generation units, (i k , j k ) ∈ E , as 

c ( δδδ) 

∣∣∣∣
θθθ= D δδδ

= 

| E | ∑ 

k =1 

[ (
s i k + s j k 

)
P i k j k (1 − cos (θk )) 

+ 

(
s i k − s j k 

)
Q i k j k 

sin (θk ) 
] 

, 

ith θθθ = D δδδ. In this case, the flux matrix can be evaluated at the

ngle differences and written as 

 δδδc = 

| E | ∑ 

k =1 

[ (
s i k + s j k 

)
P i k j k sin (θk ) 

(
s i k − s j k 

)′ 

+ 

(
s i k − s j k 

)
Q i k j k 

cos (θk ) 
(
s i k − s j k 

)′ ] 
. (10) 

ote that the flux matrix is the gradient of c ( δδδ) with respect to δδδ,

hich is not the same as the gradient of c ( δδδ) with respect to θθθ .

ndeed, the last one is 

 θθθ c = 

| E | ∑ 

k =1 

[ (
s i k + s j k 

)
P i k j k sin (θk ) 

+ 

(
s i k − s j k 

)
Q i k j k 

cos (θk ) 
] 

ˆ s ′ k ∈ R 

N×| E | , 

here [ ∇ θθθ c ] ik = 

∂ [ c ( δδδ) ] i 
∂θk 

, and 

ˆ s k ∈ R 

| E | is a vector with zeros in ev-

ry row except for the k -th row where the value is one. It is easy

o verify that ∇ δδδc = (∇ θθθ c ) D . Furthermore, 

∇ θθθ c | θθθ= 0 = 

| E | ∑ 

k =1 

(
s i k − s j k 

)
Q i k j k ̂

 s ′ k = D 

′ W . 

herefore, D 

′ W θθθ = D 

′ WD δδδ = C δδδ ≈ c ( δδδ) 
∣∣
θθθ= D δδδ is a Tylor linear ap-

roximation around the operation point θθθ = 0 of the power flow in

he grid. Lyapunov’s linearization criterion leads then to conclude

hat any stability result derived from the linear representation of

he system is sufficient to guarantee local stability around θθθ ≈ 0 .

herefore, they are also necessary conditions for global stability of

he non-linear system. 
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Fig. 2. Robust treatment of non-linearities. 

Fig. 3. Control strategy for a microgrid with only VSI as generation units. 
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3.6. A robust approximation of the non-linear model 

When the angle differences over the lines are small, one

can analyze the grid by its linear representation. The differ-

ence between this simplified model and the one including all

non-linearities can be interpreted as parametric uncertainties for

the linear model and addressed through a robustness approach.

For this, consider that, ∀ k ∈ { 1 , 2 , . . . , | E |} , we known a value

0 < εk < π /2 such that −εk ≤ θk ≤ εk . Then we have that 

− sin (εk ) ≤ sin (θk ) ≤ sin (εk ) , 
(11)

0 < cos (εk ) ≤ cos (θk ) ≤ 1 . 

Define matrices 

�C P (t) := 

| E | ∑ 

k =1 

(
s i k + s j k 

)
P i k j k �p,k (t) 

(
s i k − s j k 

)′ 
, 

�C Q (t) := 

| E | ∑ 

k =1 

(
s i k − s j k 

)
Q i k j k 

(
�q,k (t) − 1 − cos (εk ) 

2 

)(
s i k − s j k 

)′ 
, 

where ∀ (i k , j k ) ∈ E , �p,k (t) ∈ R and �q,k (t) ∈ R are unknown

quantities that compress all possible nonlinearities of the flux ma-

trix. With this, we can enforce that 

∇ δδδc 
! = C + �C P (t) + �C Q (t) 

= 

| E | ∑ 

k =1 

[ (
s i k + s j k 

)
P i k j k �p,k (t) 

(
s i k − s j k 

)′ + ... 

... + 

(
s i k −s j k 

)
Q i k j k 

(
1 + �q,k (t) −1 − cos (εk ) 

2 

)(
s i k −s j k 

)′ 
]

. 

This expression can be interpreted as an uncertain linear approxi-

mation of the flux matrix decomposed with respect to the lines be-

tween generation units. Comparing this last expression with (10) ,

it is sufficient for a robust analysis to impose that ∀ (i k , j k ) ∈ E , 

�p,k (t) 
! = sin (θk ) , 

and 

1 + �q,k (t) − 1 − cos (εk ) 

2 

! = cos (θk ) . 

Considering the bounds in (11) , the equality case is contained in

the region described by 

| �p,k (t) | ≤ sin (εk ) , (12)

| �q,k (t) | ≤ 1 − cos (εk ) 

2 

. (13)

This bounds can be used to analyze the grid by treating the non-

linearities of matrix ∇ δδδc as bounded uncertain quantities described

by �p , k ( t ) and �q , k ( t ). Of course, this procedure would lead to

conservative criteria because part of the non-linear information

is neglected. In particular, the Pythagorean relation between the

trigonometric quantities is lost if only higher and lower bounds

for �p , k ( t ) and �q , k ( t ) are considered. This can be seen in Fig. 2 ,

where the blue shaded area corresponds to the robust area de-

scribed by (11) . Clearly, to impose a criterion to all the points in

the area is more conservative that only imposing the criterion to

the arc that describes exactly the nonlinearities. 

4. Closed loop analysis 

4.1. Control objectives 

We are interested on a primary control objective known in the

microgrid terminology as power sharing . This can be simply un-

derstood as that all the per unit power injected by each inverter
 ̄i = [ ̄y ] i are equal in the long term. i.e., for all i and j ∈ V 

lim 

→ + ∞ 

[ ̄y ] i = lim 

t→ + ∞ 

[ ̄y ] j . 

his is a consensus problem and can be studied through the fol-

owing transformation as in [20] : 

 = 

[
1 N−1 −I N−1 

]
∈ R 

(N−1) ×N . 

n general, any transformation T = D 

′ (T 

o ) derived from an un-

eighted spanning directed tree T 

o can be chosen. We define the

revious one just for clarity. Each element of the vector 

 y = T ̄y (14)

s the difference of the normalized active power of the first gen-

ration unit with respect to the other generation units. Therefore

f e y asymptotically approaches the origin, the microgrid reaches

ower sharing. 

The pseudoinverse of T can be calculated as T + = T ′ (TT ′ ) −1 .

ote that because of (1) , pre-multiplying Eq. (14) by T + leads to

¯
 = T 

+ e y + J ̄y . (15)

s matrix T is a reduction of order, ȳ ∈ R 

N cannot be written as a

unction of e y ∈ R 

N−1 only. 

Additionally, we are interested on a secondary control objective.

t is desired that the operation frequency ω o,i = 

˙ ψ i = ω + υi at ev-

ry node i ∈ V is the same. When this happens it is said that the

eneration units are synchronized . This is also a consensus problem

nd can be treated similarly as power sharing. Nevertheless, it is

f further interest that synchronization is reached at the nominal
www.manaraa.com
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requency ω. This can be achieved by imposing that the frequency

eviation vector, 

:= col { υi } i ∈ V = 

˙ δδδ, (16) 

symptotically approaches the origin. 

.2. Feedback controller 

The following control law can be proposed: 

 = L ̄y + K 

∫ t 

0 

u (τ ) dτ , (17)

here L = −lI − ˆ L (G w 

) ∈ R 

N×N is the primary feedback matrix with

 w 

a given weighted undirected graph, and l > 0 a droop constant;

nd K ∈ R 

N×N is a secondary feedback matrix given by 

 := −1k 

′ , (18) 

ith k ∈ R 

N 
≥0 

an arbitrary vector with nonnegative elements. The

dea of using primary and secondary level controllers is well doc-

mented in the available references, for example [28,33] , and

everal variations of the family of control strategies defined by

17) can be found. In particular, this is similar to the controller

roposed in [11] , which is a special case of (17) . 

A traditional droop controller refers to the special case where
ˆ 
 (G w 

) = 0 and k = 0 . As υυυ := 

˙ δδδ = κu , the secondary integral action

an be interpreted as a frequency deviation integral feedback but

ith the advantage that frequency does not need to be directly

easured. 

In practice, the off diagonal elements of the feedback matrices

mply that signals need to be communicated from one generation

nit to another and therefore are avoided. However, in [19] it is

hown that the exchange of signals between the generation units

an improve the power sharing performance. On the other side,

he exchange of signals at secondary control level is necessary for

ynchronization at nominal frequency. Note that if we choose k =
 s i , for some i ∈ V and k > 0, we only need to communicate the

requency information of the i -th node to the rest and only N − 1

requency signals need to be actively exchanged. 

.3. Non-linear closed loop behavior 

Consider that the power flow in the microgrid is modeled by

he non linear equation (6) . From the studied controller (17) , with

nown feedback gains L = −lI − ˆ L (G w 

) and K = −1k 

′ , we obtain

rom the definition of the error that 

˙ 
 y = TF ̇ y 

= TF 
d 

dt 
c ( δδδ) + T ̄w 

= TF (∇ δδδc ) ̇ δδδ + T ̄w 

= κTF (∇ δδδc ) u + T ̄w 

= κTF (∇ δδδc ) 

(
LT 

+ e y + LJ ̄y + K 

∫ t 

0 

u dτ

)
+ T ̄w . 

ith w̄ = F ̇ d . Because (∇ δδδc ) 1 = 0 , then 

˙ 
 y = κTF (∇ δδδc ) LT 

+ e y + T ̄w . (19)

Furthermore, from (17) we have that 

˙ 
 = LF ̇ y + Ku 

= LF 
d 

dt 
c ( δδδ) + L ̄w + Ku 

= LF (∇ δδδc ) ̇ δδδ + 

1 

κ
K υυυ + L ̄w 

= 

(
LF (∇ δδδc ) + 

1 

κ
K 

)
υυυ + L ̄w . 
c

nd then, 

˙ = κ ˙ u = ( κLF (∇ δδδc ) + K ) υυυ + κL ̄w . (20) 

herefore, under constant load, i.e., when w̄ = 0 , power sharing

nd synchronization are achieved with the specified controller if

he non linear systems (19) and (20) are asymptotically stable. 

As noted before, locally in the vicinity of θθθ = 0 , we have that

 δδδc ≈ C . Therefore, necessary conditions for global power shar-

ng and synchronization are that, respectively, the matrices G y :=
TFCLT + and G K := κLFC + K are Hurwitz. 

.4. Robust approach to consensus in microgrids 

To deal with the stability of the non-linear systems we can con-

ider the general system 

˙ 
 = ( A + N (∇ δδδc ) M ) x , (21) 

ith matrices A , N , and M of proper dimensions. Clearly, systems

19) and (20) are special cases of (21) when the load is constant

when w̄ = 0 ). It follows from the Lyapunov function v = x ′ Px > 0 ,

hat a sufficient condition for stability of (21) is the existence of

 = P 

′ > 0 such that 

A + A 

′ P + PN (∇ δδδc ) M + M 

′ (∇ δδδc ) ′ N 

′ P < 0 . (22)

Considering the robust linear approximation of the flux ma-

rix, i.e., ∇ δδδc = C + �C P (t) + �C Q (t) , when ∀ k ∈ { 1 , 2 , . . . , | E |} ,
 θ k | ≤ εk , we can write 

N (∇ δδδc ) M 

= PNCM + PN �C P (t) M + PN �C Q (t) M 

= 

| E | ∑ 

k =1 

[ 
PN 

(
s i k − s j k 

)
Q i k j k 

(
s i k − s j k 

)′ 
M 

] 
+ ... 

... + 

| E | ∑ 

k =1 

[ 
PN 

(
s i k + s j k 

)
P i k j k �p,k (t) 

(
s i k − s j k 

)′ 
M 

] 
+ ... 

... + 

| E | ∑ 

k =1 

[ 
PN 

(
s i k − s j k 

)
Q i k j k 

(
�q,k (t) − 1 − cos (εk ) 

2 

)

×
(
s i k − s j k 

)′ 
M 

] 

= 

1 

2 

| E | ∑ 

k =1 

[ 
PN 

(
s i k − s j k 

)
Q i k j k ( 1 + cos (εk ) ) 

(
s i k − s j k 

)′ 
M 

] 
+ ... 

... + 

| E | ∑ 

k =1 

[ 
PN 

(
s i k + s j k 

)
P i k j k �p,k (t) 

(
s i k − s j k 

)′ 
M 

] 
+ ... 

... + 

| E | ∑ 

k =1 

[ 
PN 

(
s i k − s j k 

)
Q i k j k 

�q,k (t) 
(
s i k − s j k 

)′ 
M 

] 
. (23) 

Before proceeding, note that for any matrices P = P 

′ , X k , and Y k 

f proper dimensions, and scalars �k > 0, and μk > 0 the following

tatement is always true: 

1 √ 

μk 

PX k −
√ 

μk �k Y 

′ 
k 

)(
1 √ 

μk 

PX k −
√ 

μk �k Y 

′ 
k 

)′ 
≥ 0 . 

quivalently, by factorization of the previous expression, 

X k �k Y k + Y 

′ 
k �k X 

′ 
k P ≤ 1 

μk 

PX k X 

′ 
k P + μk Y 

′ 
k �

2 
k Y k . (24)

From expression (23) , using property (24) over the terms asso-

iated to �p , k ( t ) and �q , k ( t ), that is, identifying the matrices 
www.manaraa.com
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F  
X k,p = N 

(
s i k + s j k 

)
P i k j k , Y k,p = 

(
s i k − s j k 

)′ 
M , 

X k,q = N 

(
s i k − s j k 

)
Q i k j k 

, Y k,q = 

(
s i k − s j k 

)′ 
M , 

an upper bound for the non-linear term at the left hand side of

stability condition (22) can be found: 

PN (∇ δδδc ) M + M 

′ (∇ δδδc ) ′ N 

′ P 

≤ PNC εM + M 

′ C 

′ 
εN 

′ P + ... 

... + 

| E | ∑ 

k =1 

[ 
1 

μk 

PN 

(
s i k + s j k 

)
P 2 i k j k 

(
s i k + s j k 

)′ 
N 

′ P + ... 

... + μk M 

′ (s i k − s j k 

)
�2 

p,k (t) 
(
s i k − s j k 

)′ 
M 

] 
+ ... 

... + 

| E | ∑ 

k =1 

[ 
1 

μk 

PN 

(
s i k − s j k 

)
Q 

2 
i k j k 

(
s i k − s j k 

)′ 
N 

′ P + ... 

... + μk M 

′ (s i k − s j k 

)
�2 

q,k (t) 
(
s i k − s j k 

)′ 
M 

] 
, 

where 

C ε := 

1 

2 

| E | ∑ 

k =1 

[ (
s i k − s j k 

)
Q i k j k ( 1 + cos (εk ) ) 

(
s i k − s j k 

)′ ] 
, 

and ∀ k ∈ { 1 , 2 , . . . , | E |} , μk > 0 are additional scalar variables that

help to numerically relax the conservatism introduced by using the

bound (24) . This expression cannot be evaluated as we assume that

the uncertain quantities �p,k (t) ∈ R and �q,k (t) ∈ R are unknown.

However, from the known uncertainty bounds (12) and (13) , we

have that 

�2 
p,k (t) ≤ sin 

2 (εk ) , 

�2 
q,k (t) ≤ (1 − cos (εk )) 

2 

4 

. 

With this, and defining for clarity, 

R k := m k M 

′ (s i k − s j k 

)(
s i k − s j k 

)′ 
M , 

z k := N 

(
s i k + s j k 

)
P i k j k , and 

w k := N 

(
s i k − s j k 

)
Q i k j k 

, 

with 

m k := sin 

2 (εk ) + 

(1 − cos (εk )) 
2 

4 

= 

1 

4 

(1 − cos (εk ))(3 cos (εk ) + 5) , 

an upper bound for the term of stability condition (22) becomes 

PN (∇ δδδc ) M + M 

′ (∇ δδδc ) ′ N 

′ P 

≤ PNC εM + M 

′ C 

′ 
εN 

′ P + ... 

... + 

| E | ∑ 

k =1 

[ 
1 

μk 

Pz k z 
′ 
k P + 

1 

μk 

Pw k w 

′ 
k P + μk R k 

] 
. 

Making use of this upper bound for condition (22) , we then find

that a sufficient condition for stability is to impose negativity of

the following expression: 

PA + A 

′ P + PNC εM + M 

′ C 

′ 
εN 

′ P 

+ 

| E | ∑ 

k =1 

[ 
μk R k + 

1 

μk 

Pz k z 
′ 
k P + 

1 

μk 

Pw k w 

′ 
k P 

] 
< 0 . 

This expression is not linear with respect to its variables because of

the terms including multiplication of P > 0 and μk > 0. This can be

solved by using Schur’s complement to obtain the following Linear

Matrix Inequality (LMI): 
 

 

 

M 11 row { Pz k } | E | k =1 
row { Pw k } | E | k =1 

� −diag { μk } | E | k =1 
0 

� � −diag { μk } | E | k =1 

⎤ 

⎥ ⎦ 

< 0 , (25)

here 

 11 := PA + A 

′ P + PNC εM + M 

′ C 

′ 
εN 

′ P + 

| E | ∑ 

k =1 

μk R k . 

With help of any standard LMI software as SeDuMi [34] parsed

y YALMIP [15] , by replacing matrices A , M , and N adequately,

25) can be used to verify either power sharing or synchronization

f the microgrid in a neighborhood of the operation point θθθ = 0 by

reating the non-linearities of the model as parameter uncertain-

ies. A procedure to estimate the region of attraction of the opera-

ion point can also be developed from this expression. 

.5. Affine model validation 

The difference between the affine and the non-linear model of

he grid becomes relevant when the magnitude of the angle differ-

nces is large and the assumption θθθ ≈ 0 does not hold. Therefore,

 procedure to corroborate or to discard the affine model as a valid

nalysis tool needs to be consider. To do this, we can estimate the

alue of the angle differences vector θθθ from the linear model, and

hen validate this estimation by comparing the measured gener-

ted power with the prediction of the nonlinear model using the

stimated differences vector. 

If we assume that the vectors y ∈ R 

N and d ∈ R 

N are known,

hrough the affine approximation of the grid we have that 

 ≈ C δδδ + d ⇒ C 

+ (y − d ) ≈ C 

+ C δδδ

⇒ C 

+ (y − d ) ≈ (I − J ) δδδ

⇒ DC 

+ (y − d ) ≈ D (I − J ) δδδ

⇒ DC 

+ (y − d ) ≈ D δδδ

⇒ DC 

+ (y − d ) ≈ θθθ . 

herefore, an approximation of the angle differences between

eighboring nodes can be easily obtained by calculating ˆ θθθ :=
C 

+ (y − d ) ≈ θθθ . 

To verify that this approximation is accurate enough, a non lin-

ar open-loop observer can be defined as 

ˆ 
 = c ( ̂  θθθ ) + d . 

he error between the measurement injected power y and the es-

imated injected power ˆ y can be defined. The norm of this quan-

ity, ‖ y − ˆ y ‖ , is an indicator of how good the approximation of the

ngle differences through the vector ˆ θθθ is. 

. Numeric example 

.1. Microgrid description and simulation 

Consider the microgrid depicted in Fig. 4 with N = 4 generation

nits. The nominal parameters of the lines and loads are given in

able 1 . The load parameters are only an estimation of the nominal

alue and change with time. The nominal parameters of the gen-

ration units are shown in Table 2 . All simulations are performed

y implementing the microgrid circuit and model of the generation

nits with help of the software PLECS© Plexim, v.4.0.3. 

For simulation porpoises we are going to consider that the load

ehaves as depicted in Fig. 5 , maintaining during the first 20 s the

ominal values before individually changing at 20, 25, 30, and 35 s.

or arbitrary initial conditions, during the first 5 s of simulation
www.manaraa.com
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Fig. 4. Circuital description of the example microgrid. 

Table 1 

Line and load nominal parameters. 

i j R ij [ �] L ij [ mH ] 

Lines 1 2 0.630 1.2900 

2 3 0.140 0.2540 

3 4 0.580 1.3400 

1 4 0.128 0.1324 

Loads 1 1 182.0042 190.4189 

2 2 82.6027 76.6886 

3 3 203.3016 162.1858 

4 4 166.0120 107.3028 

w  

0  

s

Table 2 

Generation units nominal parameters. 

i S i = χi [ kVA ] V RMS [V] f [Hz] κ

1 1.60 220 50 0.01 

2 1.60 

3 0.80 

4 0.80 

L

a  

c

K

a  

d  

t  

o  

t  

h  

H

e consider that no control action is performed. That is ∀ t < 5, L =
 and K = 0 . During the following 5 s only a primary controller

trategy is considered with, ∀ t ≥ 5, 
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0.4

0.6

0.8

1

P
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]

time
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p
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tim

b

Fig. 5. Load behavior in Examples. a) Per unit load active power P̄ ii [ p.u. ] , and b) Power 
 = −1 I − ˆ L (G w 

) = −

⎡ 

⎢ ⎣ 

4 −1 −1 −1 

−1 4 −1 −1 

−1 −1 4 −1 

−1 −1 −1 4 

⎤ 

⎥ ⎦ 

, 

nd K = 0 . For t ≥ 10, the secondary action of the controller is

hanged to 

 = −1k 

′ = −k 1s ′ 4 = −0 . 3501 

⎡ 

⎢ ⎣ 

0 0 0 1 

0 0 0 1 

0 0 0 1 

0 0 0 1 

⎤ 

⎥ ⎦ 

nd maintained like this for the rest of the simulation time. Un-

er these simulation conditions, Fig. 6 shows the development of

he interest variables. It is clear that the microgrid reaches both

bjectives when both control actions are different from zero (for

imes greater than 10 s), even after abrupt changes of the load. Co-

erently, ∀ t ≥ 10, matrices G y := κTFCLT + and G K := κLFC + K are

urwitz. 
www.manaraa.com
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factor p f,i := cos ( arctan ( ω o,i L ii /R ii ) ) , at node 1: —, node 2: —, node 3: —, node 4: —. 
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Fig. 6. Behavior of the grid without control for t ≤ 5, with only primary droop-Laplacian controller L = −I − ˆ L (G w ) for t ∈ [5, 10], and with primary droop-Laplacian controller 

and distributed secondary controller K = −k 1s ′ 4 for t ≥ 10. a) Per unit generated active power P̄ i [ p.u. ] , and b) Frequency deviation at each inverter � f i := (u �i − ω) / (2 π)[ Hz] . 
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Fig. 7. Behavior of the grid without control for t ≤ 5, with only primary droop-Laplacian controller L = −I − ˆ L (G w ) for t ∈ [5, 10], and with primary droop-Laplacian controller 

and distributed secondary controller K = −k 1s ′ 4 for t ≥ 10. a) Approximated angle differences ˆ θθθ i [ 
◦] , and b) Error between estimated and measured output ‖ ̂ y − y ‖ [ W ] . 
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.2. Affine model validation 

The angle differences vector can be define as θθθ = D δδδ with the

ollowing matrix: 

 = 

⎡ 

⎢ ⎣ 

1 −1 0 0 

0 1 −1 0 

0 0 1 −1 

−1 0 0 1 

⎤ 

⎥ ⎦ 

. 

ach element of θθθ is associated to one of the four grid lines. Using

he control strategy defined in the previous section, i.e., L = −I −
ˆ 
 (G ) and K = −k 1s ′ 

4 
, LMI (25) is feasible for the power sharing and

he synchronization cases when ∀ k ∈ {1, 2, 3, 4}, εk = ε = 20 ◦. Nat-

rally, it also holds for smaller values of ε > 0. That is, we know

hat at least for angle differences smaller than 20 °, the grid will

each power sharing and synchronization to nominal frequency. 

This stability test could be considered conservative because of

he chosen approximation and the higher bounds imposed to the

yapunov condition. Nevertheless, this is not an issue when the

icrogrid is operated around the point θ ≈ 0 . Indeed, note that un-

er the same simulation conditions as before, the approximation
ˆ = DC 

+ (y − d ) of the angle differences is depicted in Fig. 7 a). Ob-

erve that the angle differences are in absolute value smaller than

.15 °, considerably smaller than the theoretical border of 20 ° ob-

ained with help of LMI (25) . 

In Fig. 7 b), the norm of the error between the measured in-

ected power, y , and the non linear open loop estimation 

ˆ y =
 ( ̂  θθθ ) + d is shown. Note that this value is less than 0.65[ W ] in a

ontext where the power is measured in [ kW ]. This represents less

han 0.03% of error with respect to the total generated power. From

ere we can conclude that the approximation of the grid by a lin-

ar model is accurate enough for analysis porpoises. 

. Conclusion 

In this paper we have dealt simultaneously with the problems

f frequency synchronization and active power sharing in three-

hase VSI interfaced microgrids. This is an example of a network of

gents that search consensus but are connected by hardware non-

inear relationships. By distinguishing between the process plant,

he control objectives, and the feedback controller, we are enti-

led to study the behavior of the closed loop system with respect

o the control objectives in a systematic way considering the non-

inear model of the power flux through the grid. We show that it

s possible to study power sharing and synchronization by defining

 robust approximation of the non-linearities. We further suggest

n LMI based methodology to verify that a given control strategy

akes the microgrid reach the control objectives and a procedure

o verify if the robust approximation is accurate enough for analy-

is. Future work includes the use of more complex models for the

gents, that might consider clock drifts or harmonic components,

ines faults and parameters uncertainty, and comparison with other

ontrol strategies in an experimental setup. 
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